Collective Phenomena in the Inner Ear

e Outline

— Background

— Competing views of cochlear mechanics

+ Clochlear nonlinearities mirror hair-cell non-
linearities

- Andronov-Hopt bifurcation

+ Hair cells cooperate
- Model (invert the data)
- A new type of bifurcation

- Prediction

— Summary



e Background
— Anatomy & physiology

e Competing Views of Cochlear Mechanics
— Hair-cell nonlinearities shine through
+ Eguiluz, et al., PRL, 84, 5232, 2000;
Camalet, et al., PNAS 97, 3183, 2000.

e Andronov-Hopf bifurcation
— What is it?
— How is it applied to cochlear mechanics?
— What are its predictions?

— Are they correct?
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Mass on a spring with damping:
T+ 2ex+x = 0.

Solution:

g=e %

What if € < 07

sinwf, w =1yl — €2

Z + [2e4+x%)E + . = 0.

van der Pol eq.

Convention:;
r =1
4y = —x — 2ey.
Asymmetric.
u = fz,y),
v = g(z,y)
Example:
=,
= —(y+ex)/w.
U = —€eu — W,

Wi — €U,

o=,
|



In polar coordinates: 7 = u?+v?, 6 = arctanv/u.

= el
0 = w.
2 ! p ‘
= —(e +ar‘)r+---,
§=w +bré4---.
Eguf]uz, ot al.
P = —(e+7r9)r,
2 =)

Add tone A sin wyt:
T O A‘I{w“);
r ﬁ:-c Ax0) — A1
roc AW = 4173

Correct?
a=1—Rv.

Andronov-Hopf bifurcation:

Rv(wy) < 2/3,
%y(m) 2

I IA
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FIG. 7. Rhode’s data'™ ({open symbols without error flags) for the ampli-
tude of the velocity ratio taken at constant sound-pressure level (dB values
indicated) arc connected by solid lines. The amplitude |7(x, £ of the
transfer function found by extrapolating the velocity ratio to the constant
basilar membrane displacement (|.X | = X, =25 A) is given by the solid
circles with error flags. Points above the characteristic frequency where the
extrapolation is less certain are shown as open circles. Extrapolation to the
constant velocity [| V| = F, = (27)7.9 kHz (25 A)] gives a similar result.
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— Parameterize data:
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F1G. 6. The real and imaginary parts of v ploited as a function of frequency.
The two lines are a causal function fit to the data (they are Hilbert trans-
forms of each other). The high-frequency points above the characteristic
frequency are represented by open circles,



Note

and,



— T X Alﬁ'ﬁ, not r oc A3,

e Prediction: for impulse:

F = —(e+ 1),

) = : e
[ER e

— Alberto Recio, N. C. Rich, 5. 5. Narayan, M.
Ruggero: JASA 103, 1972 (1998).
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e Competing views of cochlear mechanics

— Cochlear nonlinearities arise collectively:

e Cochlear model

—Blan -
« Co to linear limit:
lim D(w; Xy) = T(w).

u—U

* Relate T to A.
¥ Relate A to oscillator.

« Make oscillator nonlinear.
— Transfer function T’ = X/ Xy,

* Independent variables:

wel(z) &2 U-"{:-E_'-Eﬂa-

0
: ,3 — 3 : JGEJ = —
wel(z) Wo
s = 1[3.

* Dependent variable: T(8) = displacement

as a function of position.
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FIG. 1. Simplified model of the inner ear. The cochlea is uneoiled and ap-
proximated by two fluid-filled rigid-walled compartments (scalae vestibuli
and tympani) separated by a partition (scala media, of which only the basl-
lar membrane is shown ). Sound-induced vibration of the stapes sets up a
fluctuating pressure difference across the scala media, which drives its mo-
tion. The response of the basilar membrane al an instant of time to a pure
tone is schematically indicated. The vertical dimensions are greatly exag-
gerated. The three arrows in the cochlea represent instantaneous net fluid
volume velocily. When the wavelength of the wave on the basilar membrane
is larger than the height of the scalae vestibuli and tympani, the region be-
tween the stapes and the helicotrema acts like a mechanical transmission
line. (Reprinted, with permission, from Zweig et al., Refl. 23)

1230 J. Acoust. Soc. Am., Vol. 89, No. 3, March 1991



— The wave:

*+ A constant:
S VPG
e zhﬁut].
* A slowly varying: |

T ﬁe_?[ﬁgﬂ%—i_wﬂ.

1372
— The w.&we]éngth:
: Invert: T — X°.
| N e 2l e
— The linear oscillator;
ﬁ+2€:i:{—m+pm(ﬁ—*r) — ()
p = 0: edge of stability at e = 0.
p#0: e=—0.09, p=0.18 7=2n(12),
Good fit:. e = —0.06, p = 0.14, 7 = 27 (1742)

— The nonlinear oscillator:
7+ [2e + o[x* + X2+ x + pz(t —7) = 0.

Hi-fi oscillator. Combination tones are small.
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FIG. 10, The transfer lunction T{x, f } (dashed linc), derived from the em-
pirical A found by iteratively solving Eq. (115}, is compared with extrapo-
lated measurements (circles) of basilar membrane motion. The T(x, f)
corresponding to m(s) = pe ~ ™ is shown as a dotted line. Parameter values
are given in the text. The empirically determined (4/A.)? is shown in Fig.
1%
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FIG. 14. The real and imaginary parts of the zeros 5, of the impedance £ in
the region around 5, = ¢ [ £(s, ) = 0]. The zeros lic on the dotted line de-
fined by Eq. (149) and have real parts less than zero indicating that the
model is stable. The two zeros near 5 =/ create the peak of the transler
function while the zero at smaller |5| creates a plateau in the transfer func-
tion presumably corresponding to the “tails™ of neural tuning curves.’™ "
Lowering g from approximately 1 to approximately j removes the zero at
smaller |s| and its corresponding plateau.



dx/dt(0)=10




e Inferpretation:
—1-D fluid coupling (passive)
— Negative damping (active)
— Long-range stabilizing .fcrrce
b Compensation for 3-d — 1-d

— Nonlocality creates phasereversal pinch



Ogcillator properties:

— Active.

— Adaptive.

— Compressive.

— Harmonic distortion is negligible.

— QQuiet transients long. Improves detection.

— Loud transients short. Increasing temporal
resolution.

— Quiet transients have phase coherence.

Loud transients have phase reversal.

— Zero crossings are invariant.

— Initial exponential growth. Envelope rises sharply.
Accurate timing.

— The first of two pulses suppresses the second,
giving a “precedence effect” (tentative).
Reduce confusion from reverberation.

— Nonlinearities liberate oscillator from “time-
frequency enslavement.”

Phase reversal = twin peaks?

— Frequency dependent energy flow.



e Summary

— Andronov-Hopf bifurcations are not relevant

for mammalian hearing. Another type is.

— Phage-shifting pinch in click response occurs

in an isolated oscillator with time delay.

— A simple nonlocal wave equation fits data:

o
o2 5202
S iy W0
7 (E) = ;{Izj, 8= (E)at}
~ 2



